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Detection of Disease Genes by Use of Family Data.
I. Likelihood-Based Theory
Alice S. Whittemore and I-Ping Tu
Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA

We present a class of likelihood-based score statistics that accommodate genotypes of both unrelated individuals
and families, thereby combining the advantages of case-control and family-based designs. The likelihood extends
the one proposed by Schaid and colleagues (Schaid and Sommer 1993, 1994; Schaid 1996; Schaid and Li 1997)
to arbitrary family structures with arbitrary patterns of missing data and to dense sets of multiple markers. The
score statistic comprises two component test statistics. The first component statistic, the nonfounder statistic,
evaluates disequilibrium in the transmission of marker alleles from parents to offspring. This statistic, when applied
to nuclear families, generalizes the transmission/disequilibrium test to arbitrary numbers of affected and unaffected
siblings, with or without typed parents. The second component statistic, the founder statistic, compares observed
or inferred marker genotypes in the family founders with those of controls or those of some reference population.
The founder statistic generalizes the statistics commonly used for case-control data. The strengths of the approach
include both the ability to assess, by comparison of nonfounder and founder statistics, the potential bias resulting
from population stratification and the ability to accommodate arbitrary family structures, thus eliminating the need
for many different ad hoc tests. A limitation of the approach is the potential power loss and/or bias resulting from
inappropriate assumptions on the distribution of founder genotypes. The systematic likelihood-based framework
provided here should be useful in the evaluation of both the relative merits of case-control and various family-
based designs and the relative merits of different tests applied to the same design. It should also be useful for
genotype-disease association studies done with the use of a dense set of multiple markers.

Introduction

In some diseases with complex genetic etiologies, con-
flicting results have emerged from case-control studies
of association, compared with linkage analyses based on
allele-sharing within families. Specifically, although the
case-control studies have shown strong associations, the
linkage tests have proved negative (Parsian et al. 1991).
To explain this phenomenon, Risch and Merikangas
(1996) have suggested that allele-sharing linkage tests
can have poor power compared with tests for association
and that a genomewide search for associations may be
more sensitive than genome scanning for determination
of linkage.

However, case-control studies may give biased mea-
sures of association as a result of unrecognized ethnic
admixture of the population (known as the “population
stratification” problem). This possibility has prompted
interest in the use of family-based designs. Comparison
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of genotypes of affected individuals with those of their
unaffected siblings or with Mendelian expectation
based on the genotypes of their parents allows such
designs to avoid this problem. However, family-based
designs can be less powerful than case-control designs
(Witte et al. 1999), and their advantage is unclear in
light of uncertainty about the need to control for pop-
ulation stratification (Rothman et al. 1999).

In the present study, we derive a class of likelihood-
based test statistics that are applicable to cases, controls,
and arbitrary families with arbitrary patterns of missing
data and that combine the advantages of family-based
and case-control designs. The tests are based on the
score statistics derived from a specific likelihood for the
data. The likelihood function extends, to arbitrary fam-
ilies and to multiple markers, the likelihood proposed
by Schaid and co-authors (Schaid and Sommer 1993,
1994; Schaid 1996; Schaid and Li 1997) for nuclear
families with only affected offspring.

The score statistic comprises two component test sta-
tistics. The first statistic, the nonfounder statistic (NFS),
evaluates transmission disequilibrium from parents to
offspring. This statistic generalizes the transmission/dis-
equilibrium test (TDT) (Ott 1989; Terwilliger and Ott
1992; Knapp et al. 1993; Spielman et al. 1993; Ewens
and Spielman 1995; Spielman and Ewens 1996) and the
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Figure 1 A portion of the chromosomal region of interest, in
which the test locus t is flanked by two diallelic markers. The power
of the test statistics is determined by (a) the extent of disequilibrium
between t and the two markers among the chromosomes in the founder
population and (b) the probabilities of recombination between t and
each of the two markers in meiosis from parents to offspring within
a family.

score statistics proposed by Schaid and Sommer (1994),
to include multiallelic markers, markers distinct from
the trait locus, and multiple markers, with the use of
families with both affected and unaffected offspring and
families with missing parental genotypes. The second
component statistic, the founder statistic (FS), compares
marker genotypes in the family founders with those ex-
pected under the null hypothesis. This statistic gener-
alizes the statistics that are commonly used for case-
control data (Barcellos et al. 1997; Risch and Teng
1998).

We illustrate the tests with some simple examples.
These focus on genotypes at a single diallelic marker
that is in partial or complete disequilibrium with the
etiologically relevant disease locus. In the present study,
which is published with a companion article (Tu et al.
2000) in this issue of the Journal, we apply the statistics
to the special case of unrelated individuals, whereas, in
the companion article (Tu et al. 2000), we treat nuclear
families. Basing our tests on a likelihood function re-
quires that we specify a penetrance model for the re-
lationship between the disease and the genotypes at the
putative disease locus. We consider dominant and re-
cessive models as well as a family of generalized linear
models (GLMs) that includes the additive, multiplica-
tive, and linear logistic models. To use the test statistics
based on the dominant and recessive models, we must
specify the extent of gametic disequilibrium between
marker and disease loci. For GLMs, however, the tests
depend only on the total allele counts at the marker
locus in affected and unaffected individuals. Thus, for
these models, the tests can be used with pooled DNA.

Test Statistics

We assume that members in each of N unrelated families
have been genotyped at a set of closely spaced markers
in a chromosomal region. We also assume that, for some
of the family members, phenotype (affected versus un-
affected) is known. We want to use the marker data to
test the null hypothesis that none of the genes in the
region is related to the disease. Our objective is to de-
velop test statistics with good power under the alter-
native hypothesis that a locus in the region is associated
with the disease. We base our tests on the likelihood of
the family’s marker data, considered as a function of
position t in the region. By use of the term “region,” we
define the set of all loci that are both linked to and in
gametic disequilibrium with at least one of the markers.
We make basic assumption A.1: given the family’s gen-
oytypes at a test locus t, the family’s phenotypes and
marker genotypes are independent. Figure 1 shows the
chromosomal region when the test locus t lies between
two markers.

Likelihood for a Family

We define a family to be a set of individuals such that
(a) any two individuals are connected in the sense pro-
posed by Thompson (1986, p 21) and (b) each individual
is either a founder (neither parent belongs to the family)
or a nonfounder (both parents belong to the family).
The genotype and/or phenotype of any family member
may be unknown; however, the family must contain at
least one member with a known phenotype and at least
one member with a known genotype. Let y = (y ,...,y )1 m

denote the vector of phenotypes for the m members with
known phenotype. Here has a value of 1 if the thy ��

family member is affected with the disease and has a
value of 0 otherwise, . We assume that phe-� = 1,...,m
notypes are missing at random (Little and Rubin
1987)—that is, the probability of failure to observe a
member’s disease status does not depend on his or her
actual status or on his or her marker genotypes. With
this assumption, the likelihood at locus t is the proba-
bility of the family’s observed marker data,P(MFR,y,t)
denoted as , given the family’s geneological structureM

R, given the vector y of observed phenotypes, and given
that t is the disease locus. We use Bayes theorem to write
this probability as follows:

P(M)P(yFM,R,t)
P(MFR,y,t) = . (1)

P(yFR,t)

To simplify the notation, we now suppress the depen-
dence of the probabilities both on the family structure
R and on the particular locus t. Let denoteg = (g ,...,g )1 m

the vector of genotypes at locus t of the m family mem-
bers of known phenotype. We want to allow for the
possibility that t is not one of the marker loci. Assump-
tion A.1 states that the family’s phenotype y and its
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marker data are conditionally independent, given g.M

Thus, we write

P(yFM) = P(yFg)P(gFM) , (2)�
g

where denotes summation over all possible genotype� g

vectors g. Substitution of notation (2) into probability
(1) gives the likelihood for the family as

P(yFg)
P(MFy) = P(M) P(gFM) . (3)�

P(y)g

In this instance, is the marginal prob-P(y) = S P(yFg)P(g)g

ability of the family phenotype.
Family likelihood (3) involves three types of proba-

bilities. The first type is the probability of the fam-P(M)
ily’s marker data, under the null hypothesis that the
chromosomal region containing the markers is not re-
lated to disease risk. We shall specify this probability in
terms of a vector of marker parameters. These determine
the frequencies of the marker alleles or haplotypes
among chromosomes in the populations from which the
family’s founders were drawn, and we assume that they
are known.

The second type of probability relates the alleles at
locus t to the marker data. These probabilities appear
in expression (3) as . They depend on the extentP(gFM)
of gametic disequilibrium between locus t and the
marker loci in the family founders and on the probability
of recombination between t and its nearest marker loci
in meioses within a family. In general, the extent of ga-
metic disequilibrium between markers and t is not
known, unless t is one of the marker loci. However, in
many situations of practical interest, the test statistics
themselves do not depend on this gametic disequilib-
rium, although their power does.

The third type of probability needed in the likelihood
consists of the penetrance functions for the var-P(yFg)
ious possible family genotypes g. For family members
with known phenotype, these penetrance functions give
the joint probability of disease occurrence or nonoc-
currence as functions of the members’ genotypes at locus
t. To specify these penetrances, we assume that, at most,
one allele or one group of alleles, labeled D1, confers
elevated disease risk. We also group all other alleles and
label this group as allele D2. We set for the genotypeg = i
of an individual who carries i copies of the putative high-
risk allele D1, .i = 0,1,2

For families with one individual of known phenotype,
we need only the three penetrances ,P(y = 1Fg = i) i =

. We shall consider the following general class of0,1,2
penetrance models:

P(y = 1Fg = i) = p(a � bc ) ,i

i = 0,1,2; with c = 0, c = 1 . (4)0 2

Here p is a known smooth monotonic function, a is a
constant that specifies risk in homozygotes, andD D2 2

b is an unknown constant relating risk in ho-D D1 1

mozygotes to that in homozygotes. Also, is aD D c2 2 1

specified constant relating disease risk in hetero-D D1 2

zygotes to that in homozygotes. The valueD D b = 02 2

corresponds to the null hypothesis of no relation be-
tween the disease and locus t. In this instance, the pa-
rameter a determines the disease prevalence in the pop-
ulation p(a), under the null hypothesis that disease is
unrelated to the family genotype g. We will often assume
that p(a) is known from data on disease prevalence in
the population. We shall call a and b “penetrance pa-
rameters.”

Penetrance has traditionally been modeled with the
use of , with for the dominant model,p(x) = x c = 11

for the recessive model, and for the ad-c = 0 c = 1/21 1

ditive model. Other models in the class (4) include the
multiplicative model, with andp(x) = exp (x) c = 1/21

(Self et al. 1991; Risch and Merikangas 1996; Schaid
1996; Whittaker and Lewis 1998), and the linear logistic
model, with and . The pene-x xp(x) = e /(1 � e ) c = 1/21

trances in any model (4) with are, after an ap-c = 1/21

propriate transformation, linear in the number i of high-
risk D1 alleles. Accordingly, we shall call them “GLMs”
(McCullagh and Nelder 1989). Individuals with geno-
type g at a putative trait locus t will be said to have a
“ count of .” Thus, if the penetrances are specifiedD c1 g

by a GLM, an individual’s count is one-half of theD1

number of his or her copies of allele . In contrast, forD1

a recessive or dominant model, an individual’s countD1

is 1 if he or she is a carrier of the high-risk genotype;
otherwise, it is 0.

For families with members of known pheno-m 1 1
type, we must specify their joint probability of disease,
conditional on their genotypes at locus t. We assume
that, given his or her own genotype g, an individual’s
phenotype does not depend on the genotypes of his or
her relatives and that, given g, the phenotypes of relatives
are conditionally independent. Therefore,

P(yFg) = P(y ,...,y Fg ,...,g )1 m 1 m

m

y 1�y� �= � [p(a � bc )] [1 � p(a � bc )] .g g� �
�=1

(5)

These assumptions ignore the possibility that residual
correlation in family phenotypes may be a result of other
loci responsible for the disease or of shared, unmeasured
risk factors. Fortuitously, the proposed statistical tests
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Table 1

Categories of a Diallelic Autosomal Marker for a NuclearK = 15
Family with One Offspring

MARKER CATEGORY

( )ak = fh = f f h1 2

PROBABILITYb

cC C C1k 2k 3k wk
duf vhFf

1. (222)B B ,B B ,B B1 1 1 1 1 1
2u2 1 111 2 � w

2. (212)B B ,B B ,B B1 1 1 2 1 1 u u1 2 1/2 1c11 2 � wc1

3. (211)B B ,B B ,B B1 1 1 2 1 2 u u1 2 1/2 1c c1 1 1 � wc � c1 1

4. (122)B B ,B B ,B B1 2 1 1 1 1 u u1 2 1/2 c 111 c � w � 11

5. (121)B B ,B B ,B B1 2 1 1 1 2 u u1 2 1/2 c 1c1 1 2c � w1

6. (201)B B ,B B ,B B1 1 2 2 1 2 u u0 2 1 10c1 1 � c1

7. (021)B B ,B B ,B B2 2 1 1 1 2 u u0 2 1 01c1 �w � c1

8. (112)B B ,B B ,B B1 2 1 2 1 1
2u1 1/4 c c 11 1 (1 � w)c � 11

9. (111)B B ,B B ,B B1 2 1 2 1 2
2u1 1/2 c c c1 1 1 (2 � w)c1

10. (110)B B ,B B ,B B1 2 1 2 2 2
2u1 1/4 c c 01 1 (1 � w)c1

11. (101)B B ,B B ,B B1 2 2 2 1 2 u u1 0 1/2 c 0c1 1 2c1

12. (100)B B ,B B ,B B1 2 2 2 2 2 u u1 0 1/2 c100 c1

13. (011)B B ,B B ,B B2 2 1 2 1 2 u u0 1 1/2 0c c1 1 (1 � w)c1

14. (010)B B ,B B ,B B2 2 1 2 2 2 u u0 1 1/2 0c 01 �wc1

15. (000)B B ,B B ,B B2 2 2 2 2 2
2u0 1 000 0

a fi = number of B1 alleles in the genotype of parent i, ; h =i = 1,2
number of B1 alleles in genotype of the offspring.

b = probability of parental genotype ; = proba-u = u f = f f vf f f 1 2 hFf1 2

bility of offspring genotype h, given parental genotype f.
c = D1 count of family member , , when family hasC � � = 1,2,3�k

category k and when .D = B1 1
d , where is a phenotype value for fam-w = a C � a C � a C ak 1 1k 2 2k 3 3k �

ily member .�, � = 1,2,3

remain valid (in the sense of having the correct null
asymptotic p values) even if this residual correlation is
ignored, and we shall ignore it hereafter. However, it is
possible that more-accurate modeling of the correlation
could improve statistical power, and this possibility re-
quires investigation.

From (5), we see that, under the null hypothesis b =
, the probability is independent of the family0 P(yFg)

genotype g; thus, the likelihood (3) is simply the null
probability of the marker data. Our objective isP(M)
to derive efficient score statistics based on the likelihood
(3) and to use them to test the null hypothesis forb = 0
various test loci t in the region covered by the markers.
When assumption A.1 holds, the score statistics have
standard Gaussian null distributions—asymptotically, as

. After presentation of the statistics, we will dis-N r �
cuss, in brief, the types of bias that can arise when as-
sumption A.1 fails.

Score for a Family

We consider the use of likelihood-based efficient score
statistics (Cox and Hinkley 1974) for testing of the null
hypothesis that a family’s phenotype y is independent
of its genotype g at locus t—that is, . To describeb = 0
these statistics, we suppose that there are K possible
categories of marker genotypes for the family and that,
if the marker genotypes were known for all members,
the family could be classified in one and only one of the
categories. For example, table 1 shows the cat-K = 15
egories for a nuclear family with one offspring, when
the marker data consist of genotypes at a single diallelic
locus. In general, the family’s marker category may not
be known, because some members have not been typed
at some or all of the marker loci. To deal with this
uncertainty, we shall introduce a random variable thatxk

represents the null probability that the family has cat-
egory k, given its observed marker data :M

r P(MFcategory = k)kx = P(category = kFM) = .k ′� r P(MFcategory = k )′k′k

(6)

In this instance, is the marginal probability that therk

family belongs to category k, under the null hypothesis.
If the family is known to have, for example, category
, then and , . If the category is not� x = 1 x = 0 k ( �� k

known, then is a conditional probability, given thexk

marker data.
In the Appendix, we show that, for the class (4) of

penetrance models and on the basis of the likelihood (3)
at locus t, the score for the family is

S = w (x � r ) . (7)� k k k
k

Here is a weight attached to marker category k. Thus,wk

the score is a weighted sum of deviations between “ob-
served” and expected frequencies of the K marker cat-
egories. The weights determine the importance of onewk

marker category relative to another. They depend on the
relations between genotypes at marker loci and geno-
types at locus t as well as on the penetrance functions
relating disease to genotypes at t.

To describe the weights, we consider the simple ex-
ample of a nuclear family with one offspring evaluated
at a single diallelic “candidate gene” with alleles B =1

and and with no missing genotypes or phe-D B = D1 2 2

notypes. In table 1, the Marker Category column shows
the 15 possible marker categories for the family, where

, , and h denote the genotypes of parent 1, parent 2,f f1 2

and the offspring, respectively. For category ,k = f f h1 2

the penetrance values , , and determine a triplec c c2 1 0

value, of counts for the family.C C C = c c c , D1k 2k 3k f f h 11 2

The column in table 1 shows these triple val-C C C1k 2k 3k

ues for and . The weight for category kc = 1 c = 0 w2 0 k

is
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n

w = a C , (8)�k � �k
�=1

where is the D1 count of family member when theC ��k

family has marker category k, , and in� = 1,...,n n = 3
this example. Also, , a phenotype value for membera�

, is defined as follows:�

1 if y observed and y = 1� �

a = �w if y observed and y = 0 (9)� � �{0 if y unobserved .�

In this definition, , where is thew = p/(1 � p) p = p(a)
disease prevalence in the population under the null hy-
pothesis. If, for example, parent 1 and the offspring are
affected and parent 2 is unaffected, then anda = a = 11 3

. Substitution of these values in (8) results ina = �w2

. Thus, is a difference betweenw = C � C � wC wk 1k 3k 2k k

counts of affected and unaffected family members,D1

with unaffected family members contributing a value w,
relative to affected members. In table 1, the columnwk

shows the weights for the 15 marker categories.wk

The marker category probability in score (7) factorsrk

as the probability of the founder-genotype category mul-
tiplied by the conditional probability of the nonfounder-
genotype category, given the founder-genotype category.
Thus, a specific marker category can be written as k =

, where f and h represent categories of marker geno-fh
types for founders and nonfounders, respectively. For
example, the family genotype (table 1,B B ,B B ,B B1 1 1 2 1 1

row 3 [ {211}] ) is labeled andB B ,B B ,B B f = 211 1 1 2 1 2

or . We writeh = 1 k = fh = 211

r = r = u v , (10)k fh f hFf

where is the null probability of founder category fuf

and where is the probability of nonfounder subca-vhFf

tegory h, given that the founders’ genotypes belong to
category f. The Probability column of table 1 shows uf

and for the nuclear family in this example. NoticevhFf

that the probabilities depend on the marker parametersrk

only through ; the probabilities are constants de-u vf hFf

termined by the Mendelian laws of inheritance.
To illustrate computation of the score S, suppose that

the nuclear family is observed to have marker category
. Then, from equation (6), andf f h = 212 x = 1 x =1 2 212 k

. Substitution of these values into equation0, k ( 212
(7) gives the score for this family as .S = w � S r w212 k k k

From equation (8), we see that the score is the difference
between the observed and expected values of a linear
combination of D1 counts among the family members.

In row 2 ( [212]) of table 1,B B ,B B ,B B w =1 1 1 2 1 1 212

. Also, from equation (8) and from the values2 � wc1

for in table 1, 3r S r w = S a S r C = (a �( )k k k k �=1 � k k �k 1

, where 1′ ′ ′ 2a )(u � c u ) � a (u � c u ) u = (u � u )2 2 1 1 3 2 1 1 2 2 12

and . Thus,1′ 2u = u � 2u u � u S = 2 � wc � [(1 �1 1 0 2 1 12

. Under Hardy-Weinberg′ ′w)(u � c u ) � u � c u ]2 1 1 2 1 1

equilibrium (HWE) for the parental-genotype frequen-
cies, and . If, in′ 2 ′u = u = [P(B )] u = u = 2P(B )P(B )2 2 1 1 1 1 2

addition, , then .1c = 1/2 S = 2 � w � (2 � w)P(B )1 12

Suppose that parent 1 is untyped. We therefore know
only that the family marker category is either 212 or
112. Thus, according to equation (6) and rows 2 and 8
( [212] and [112], re-B B ,B B ,B B B B ,B B ,B B1 1 1 2 1 1 1 2 1 2 1 1

spectively) of table 1,

r 2u212 2x = =212 r � r 2u � u212 112 2 1

r u112 1x = =112 r � r 2u � u212 112 2 1

x = 0, k ( 212, 112 .k

Under HWE, and . The family’sx = P(B ) x = P(B )212 1 112 2

score is as follows:

2u u2 1S = w � w � r w�212 112 k k2u � u 2u � u k2 1 2 1

2u u2 1= (2 � wc ) � (1 � wc � c )1 1 12u � u 2u � u2 1 2 1

� r w .� k k
k

In general, when some family members are untyped,
a random vector of probabilities (6) is assigned to the
possible categories, where the probabilities are condi-
tional on the observed marker data for the family. This
random vector depends on the null founder-genotype
probabilities , which must be specified or estimateduf

from external data. In the companion article (Tu et al.
2000), we illustrate maximum-likelihood estimation of

when the founders are parents in nuclear families.uf

Martin et al. (1998) have also proposed such genotype
reconstruction for parents in nuclear families.

We will now describe the weights for families ofwk

arbitrary structure, not only when some members may
be untyped but, also, when the markers do not neces-
sarily include the trait locus. To do so, we will let

denote the probability that member of a familyg (i) ��k

with marker category k carries i copies of allele ,D1

. The weights are then given according to equa-i = 0,1,2
tion (8), where is now the condi-C = c g (1) � g (2)�k 1 �k �k

tional count for family member , given the familyD �1

marker category k. When, as in the example shown in
table 1, the marker data include genotypes at locus t, a
family marker category k specifies a count for eachD1

family member.
In summary, computation of a family’s score S may
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involve two types of imputation: (a) imputation of the
family marker category when it is incompletely observed
(e.g., when parental genotypes are missing) and (b) im-
putation of family members’ counts at the putativeD1

disease locus t, when locus t is not one of the markers.
The latter imputation requires knowledge of the extent
of disequilibrium between locus t and its nearest markers
among the family founders. Like the disease prevalence
p, disequilibrium parameters relating alleles at locus t
to those at the marker loci cannot be estimated from the
data, since genotypes at locus t are not observed. How-
ever, misspecification of the disequilibrium parameters
will not affect the validity of a score test, although it
will decrease the test’s power.

Expressions (8) and (9) indicate that the contribution
of an unaffected member, relative to that of an affected
member, is determined by the disease odds w = p/(1 �

. Since the disease prevalence p is invariably ! , thep) 1/2
counts of unaffected members contribute less to the score
than do those of affected members. In particular, for rare
diseases ( , the counts of unaffected members con-p K 1)
tribute little to the score statistic. For many diseases, p

is known at least approximately. It cannot be estimated
from the family data, since the families have been as-
certained on the basis of their phenotype. However, since
p appears only in the weights and not in the nullwk

probabilities , its misspecification will not produce in-rk

correct p values, although it may affect statistical power.
Choosing optimal values for w is an area that requires
research. In the companion article (Tu et al. 2000), we
use simulations to compare the power of tests based on
genotypes in phenotype-discordant sib pairs, with the
use of and w equal to the disease odds in thew = 1
population.

Under the null hypothesis, the score S of equation (7)
has a mean of 0 and an asymptotic variance of

2 2

2V = E[S ] = E w x � w r , (11)� �k k k k[( ) ] ( )
k k

as described in the Appendix.

Decomposition of the Score

The factorization (10) of the null family marker cat-
egory probabilities of induces a decomposition of therk

score (7) as a sum of nonfounder and founder scores:
. In this instance, the nonfounder score isS = S � SNF F

S = w (x � x v ) , (12)��NF fh fh f• hFf
f hd f

where denotes summation over the nonfounder cat-�hFf

egories h compatible with f, , and whenw = w x = xfh k fh k

, and with .fh = k x = � xf• hFf fh

For the family with observed marker category 212 (see
table 1), we have and when . Sub-x = 1 x = 0 f ( 2121• f•

stitution of these values and the corresponding intovhFf

equation (12) results in the following nonfounder score
for this family: 1 1S = w � (w � w ) = (w �NF 212 212 211 2122 2

. For the phenotype values ,w ) (a ,a ,a ) = (1, � w,1)211 1 2 3

and are shown in rows 2 and 3w w212 211

( [212] and [211], re-B B ,B B ,B B B B ,B B ,B B1 1 1 2 1 1 1 1 1 2 1 2

spectively) of table 1. With these values, S = 2 �NF

. Marker category1 1wc � (3 � 2wc � c ) = (1 � c )1 1 1 12 2

212 denotes transmission of allele from heterozygousB1

parent 2 to the affected offspring. If this parent had
transmitted allele to the affected offspring, resultingB2

in marker category 211, then the NFS would be S =NF

. Thus, if , then or , de-1 (c � 1) c = 1/2 S = 1/4 �1/41 1 NF2

pending on whether parent 2 transmits allele orB B1 2

to the offspring. Indeed, for a single marker in nuclear
families with known genotypes and , SNF is justc = 1/21

the TDT.
Notice that the parental-phenotype values do not con-

tribute to SNF. In general, founders contribute only their
genotypes to the NFS, and these founder genotypes are
used only to compute the null expectations of the non-
founder genotypes. In contrast, phenotypes of nonfoun-
ders play a central role in the statistic. If, for example,
the phenotype of the single offspring in this family were
unknown, then SNF would vanish. The genotypes of non-
founders with unknown phenotype are useful for re-
construction of the family’s marker category, but, be-
cause they do not enter the weights wk, they are not
evaluated directly in the NFS.

When the genotype of parent 1 is unknown, the non-
founder score is as follows:

2u u2 1S = (2 � wc ) � (1 � wc � c )NF 1 1 12u � u 2u � u2 1 2 1

1
� (3 � 2wc � c ) .1 12

As this example illustrates, when the founder category
of the family is known, SNF does not involve the marker
parameters. However, when the founder category is not
known, SNF depends on the marker parameters through
the founder-category probabilities , which, in formulauf

(6), determine the for the xk.rk

The variance of SNF, conditional on the vector x =•

of probabilities for the F founder categories,(x ,...,x )1• F•

is as follows:

2 2

V = x E w x � w v .� � �NF f• fh fh fh hFf( ) ( ){ [ ] }f hd f hd f
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We now turn to the founder score, which is as follows:

—S = w (x � u ) . (14)�F f f• f
f

In this case,

n
——w = w v = a C , (15)� �f fh � �fhFf

hFf �=1

and is the expected D1 count for the th
—
C = S C v ��f hFf �fh hFf

member in a family whose founders have marker cate-
gory f. Consider again the family with category 212 (see
table 1), so that and when . Forx = 1 x = 0 f ( 2121• f•

this family, . From equation— —2 2S = w � S S w u uF 21 f =0 f =0 f f f f1 2 1 2 1 2

(15), we see that, with phenotype values (a ,a ,a ) =1 2 3

,(1, � w,1)

3 1— — ——w = C � wC � C = � wc � c ,21 1,21 2,21 3,21 1 12 2

where we have used the expected D1 counts
—
C =1,21

, and . Two observations are
— — 11, C = c C = (1 � c )2,21 1 3,21 12

noteworthy in this case: (a) the expected counts forD1

the founder parents are just their observed counts,D1

whereas the count of the offspring is his or her ex-D1

pected count, given those of his or her parents, and (b)
if, for example, parent 1 has a known genotype but an
unknown phenotype—so that —then the genotypea = 01

of this parent still contributes to the founder score
through its contribution to the expected count of hisD1

or her affected offspring. In contrast, if the offspring has
a known genotype but an unknown phenotype, his or
her genotype is used only to reconstruct the genotypes
of his or her parents.

The variance of SF is as follows:

2
2

— —2V = E[S ] = E w x � w u .� �F F f f• f f( ) ( )[ ]f f

(16)

The variance of the total score, given by equation (11),
can be written as follows:

V = V � E[V ] , (17)F NF

where E[VNF] is given by equation (13), with replacedxf•

with uf.

Score Statistic for N Families

For a collection of N independent families from a
population that is homogeneous with respect to disease

risk, the nonfounder, founder, and total score statistics
are, respectively,

N N� S � SNFn Fn
n=1 n=1

T = , T = ,NF F�V ˆ� NFn ��VFnn
n

N� (S � S )NFn Fn
n=1and T = . (18)

ˆ��Vn
n

In this case, for the nth family, , VNFn, VFn, andn = 1,...,N
Vn, are given by (13), (16), and (17), and the hat denotes
an estimate. (In these expressions, the unknown param-
eters uf must be replaced with estimates.) When the foun-
der-genotype probabilities are specified correctly, the sta-
tistics , , and in (18) each have—asymptotically,T T TNF F

as —a standard Gaussian distribution under theN r �
null hypothesis of no effect at locus t.

The score statistics for N families from a population
that is heterogeneous with respect to disease risk are the
weighted averages of statistics for the I homogeneous
subpopulations. For example, the total score statistic is

, where, for subpopulation i, is theI I 2�T = S e T / S e Ti=1 i i i=1 i i

total score statistic and where the weight depends onei

its disease risk in the population , as described in thepi

Appendix.
Some invariance properties of the score statistics are

worth noting. First, a family’s founder score SFn in (14)
is unchanged if all weights are replaced with— —∗w w =nf nf

, where yn is an arbitrary family-specific constant,—w � ynf n

since . Second, the nonfounder score� x = � u = 1f n•f f f

SNFn in (12) is unchanged when all weights wnfh are re-
placed by , where ynf is an arbitrary fam-∗w = w � ynfh nfh nf

ily-specific constant that is independent of its nonfoun-
der category h. In particular, since the conditional D1

counts of founders depend only on their own category
f and not on the category h of their descendants, the
summands of wnfh corresponding to founders can be ig-
nored. Therefore, neither the counts nor the phe-D1

notypes of founders contribute to the NFS. Finally, the
weights in either the founder score or the nonfounder
score can all be multiplied by any nonzero constant y,
without changing the standardized test statistics. We
shall use these invariance properties to simplify the test
statistics in the examples in this article and in the com-
panion article (Tu et al. 2000).

We conclude this section with a brief discussion of the
bias (i.e., incorrect asymptotic type I–error probabilities)
that could arise if assumption A.1 fails. This assumption
states that, given the family’s genotypes at a test locus
t, its phenotypes and marker genotypes are independent.
It would fail if one or more of the markers were asso-
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Table 2

Haplotype Probabilities at Test Locus t and Marker Locus s

HAPLOTYPE PROBABILITY

AT MARKER ALLELE

DISEASE ALLELE B1 B2 Total

D1 P(B )P(D ) � d1 1 P(B )P(D ) � d2 1 P(D )1

D2 P(B )P(D ) � d1 2 P(B )P(D ) � d2 2 P(D )2

Total P(B )1 P(B )2 1

ciated with any (genetic or nongenetic) risk factors for
the disease. In this case, the likelihood at locus t, under
the null hypothesis , would not be the null prob-b = 0
ability of the markers in the general population, since
the families were ascertained for multiple cases of dis-
ease. Consequently, the FS, which compares the geno-
type frequencies among founders in these multiple-case
families with those in some reference population, would
not have a standard Gaussian distribution. Thus, the FS
can be biased by association between markers and risk
factors that do not segregate with disease within families.
The NFS, in contrast, is conditioned on the observed or
inferred distribution of marker genotypes in the founders
of the ascertained families. This conditioning assures
that the NFS has the correct asymptotic null distribution
in the absence of linkage to a locus that segregates with
disease within families, provided that, when some foun-
der genotypes are unobserved, the distribution of foun-
der genotypes is specified correctly. While departures
from random mating, HWE, etc., in the founders could,
in principle, affect the asymptotic null distribution of the
NFS, it is difficult to envisage examples involving serious
bias. Most likely, divergent results for NFS and FS at a
given locus t, with the former being nonsignificant and
the latter significant, would suggest marker-disease as-
sociation in the absence of linkage. Conversely, if the
NFS were significant but the FS were nonsignificant, then
this would suggest that the markers are linked to, but
are in weak gametic disequilibrium with, a disease locus
t.

Application to Single Diallelic Polymorphisms in Case
Series and Case-Control Studies

We illustrate the score statistics by applying them to very
simple families, such as nuclear families and “families”
consisting of single unrelated individuals. We regard a
single individual, who is either affected (a case) or un-
affected (a control), as a founder of his or her “family.”
The scores of nuclear families and of unrelated cases and
controls are summed to form the test statistics. The FS
TF evaluates the genotypes of cases, controls, and parents
in the nuclear families, whereas the NSF TNF evaluates

just the genotypes of the offspring in the nuclear families,
comparing them with the Mendelian expectation.

Suppose that individuals are typed at a single diallelic
marker with alleles and . The marker locus mayB B1 2

be distinct from the test locus t, but, if this is so, then
the alleles at the two loci are assumed to be in gametic
disequilibrium in the population. Let denote theP(D B )i j

probability that a random chromosome from the pop-
ulation carries the haplotype , . Table 2D B i, j = 1, 2i j

gives these probabilities in terms of the marginal prob-
abilities and and the disequilibrium coeffi-P(D ) P(B )i j

cient . The probability thatd = P(D B ) � P(D )P(B ) p1 1 1 1 1

a random chromosome containing allele also con-B1

tains allele is thusD1

( )P D B1 1 d
( )p = 1 � q = P(D FB ) = = P D � .1 1 1 1 1( ) ( )P B P B1 1

The analogous probability , for a chromosome con-p2

taining , isB2

d
( )p = 1 � q = P(D FB ) = P D � .2 2 1 2 1 ( )P B2

For convenience, we introduce a standardized disequi-
librium coefficient D, defined as D = d/ [P (B ) P (B )] =1 2

. By assumption, .p � p D ( 01 2

In the companion article (Tu et al. 2000), we applied
the score statistics to nuclear families for which markers
at the putative disease locus are observed but for which
the family marker category typically is unobserved. In
contrast, in the present study, we apply them to families
consisting of single, unrelated individuals in which the
marker category is observed but in which the marker
may not be the trait locus. Since these latter families
contain only founders, the nonfounder score is 0, and
the total score for an individual reduces to the founder
score SF of (14). There are marker catego-K = F = 3
ries—namely, the three genotypes , , andB B B B2 2 1 2

—which are indexed as , respectively.B B f = 0,1,21 1

Their null probabilities are ,r = u f = 0,1,2.f f

Case Series

In case series, the marker genotypes of a sample of N
cases are compared with those in some reference pop-
ulation. The score statistic is given by (14), with the
weight for a case with genotype f given as ,

——w = w = Cf f f

as shown in table 3. The invariance properties of the
test statistic, which were described at the end of the
previous section, allow us to standardize the weights so
that and . Note, however, that this stan-w = 0 w = 10 2

dardization requires replacement of with
—

w = C w =f f f
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Table 3

Probability That a Founder with f Copies of Marker Allele B1
—g (i)f

Carries Copies of a Nearby Disease Allelei

f —g (0)f
—g (1)f

—g (2)f

— — —C = c g (1) � g (2)f 1 f f

a

— —
C � Cf 0
— —
C � C2 0

2 2q1 2p q1 1
2p1

b22c p � ep1 1 1 1
1 q q1 2 p q � q p1 2 1 2 p p1 2 c (p � p ) � ep p1 1 2 1 2 lc

0 2q2 2p q2 2
2p2

22c p � ep1 2 2 0

a , if and only if ,
— —
C � C = D [2c � (1 � 2c )(p � p )] ( 0 D ( 02 0 1 1 1 2

where is the standardized disequilibrium coefficient.D = p � p1 2
b .e = 1 � 2c1
c .l = (c � ep )/ [2c � e(p � p )]1 2 1 1 2

, where
— — — — — —

(C � C )/(C � C ) C � C = D[2c � (1 �f 0 2 0 2 0 1

. Since is proportional to the dis-
— —

2c )(p � p )] C � C1 1 2 2 0

equilibrium coefficient D, the standardization is possible
only when . Indeed, SF is itself proportional to D.D ( 0
Thus, if —that is, if the marker were in linkageD = 0
equilibrium with the test locus, then the distribution of
the FS would be degenerate at 0.

In table 3, we see that the weight attached to B B1 2

heterozygotes, when and homozygotes receiveB B B B1 1 2 2

weights of 1 and 0, respectively, is l, which is defined
as follows:

c � ep1 2w = { l . (19)1 2c � e(p � p )1 1 2

Here . We use the symbol SFn to denote thee = 1 � 2c1

founder score for the nth case. Substitution of the
weights (19) into equation (14) results in

S = x � lx � (u � lu ) , (20)Fn n2 n1 2 1

where uf is the frequency of genotype f in the reference
population and where ; otherwise, if the case’sx = 1nf

genotype is f, , . Summing the individualx = 0 f = 0,1,2nf

scores (20) over the N cases shows that the score is
, where Nf is the num-NS S = N � lN � N(u � lu )n=1 Fn 2 1 2 1

ber of cases with genotype f. The founder (and total)
score statistic is

N � lN � N(u � lu )2 1 2 1
T = , (21)�Nj

where, from (16),

2 2j = V = u (1 � u ) � l u (1 � u ) � 2lu u . (22)F 2 2 1 1 1 2

To use , we must specify the weight l for heterozygotesT

and the genotype frequencies in the referenceu ,u ,u0 1 2

population.

Case-Control Studies

Case-control studies are based on comparison of the
marker genotypes of, for example, cases with thoseNA

of controls. The likelihood for the data is the productNU

of the probabilities of case and control marker data, and
the corresponding score is the sum of the score for the
case data plus the score for the control data. The re-
sulting test statistic can be written as

T wfTA U
T = , (23)

2 2�1 � w f

where and are the test statistics (21) applied toT TA U

cases and controls, respectively; where w is the pheno-
type value for controls in equation (9); and where

is the control:case ratio.2f = N /NU A

To use , we must specify the heterozygote weight lT

of equation (19), the phenotype value w, and the null
marker genotype probabilities . With the choiceu ,u ,u0 1 2

of , equation (23) becomesw = N /NA U

( ) ( )N � lN /N � N � lN /N[ ] [ ]A 2 A1 A U2 U1 U

T = ,�( ) ( )j 1/N � 1/NA U

where and are the numbers of cases and con-N NAg Ug

trols, respectively, with genotype and where j2g = 0,1,2
is given by (22). This choice for w eliminates the null
genotype frequencies from the numerator ofu ,u ,u0 1 2

; however, they appear in j. They can be estimatedT

from the group of controls as û = (N ) / (N ) , f =f Uf U

. The resulting test statistic is the standardized0,1,2 T

difference in expected D1 counts between cases and con-
trols. For , is the statistic proposed by Barcellosc = 1/2 T1

et al. (1997) and Risch and Teng (1998), for testing of
allelic association between disease and marker in pooled
DNA from cases and controls. In this case, also is theT

score statistic for the traditional linear logistic regression
of unrelated cases and controls.

Heterozygote Weight l

The optimal weight l for heterozygotes varies ac-
cording to the penetrance model and the extent of dis-
equilibrium between trait and marker loci, as specified
by the probabilities and . In practice, these prob-p p1 2

abilities seldom are known. However, it is evident from
(19) that, for , the weight is independentc = 1/2 l = 1/2,1

of and . For these models, is just the standardizedp p T1 2

difference between observed and expected counts, re-B1

gardless of the extent of gametic disequilibrium between
the two loci (provided, of course, that some disequilib-
rium exists).

When trait and marker loci coincide (so that, for ex-
ample, , then . In this case, is thep = 0, p = 1) l = c T2 1 1
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standardized difference between observed and expected
counts in cases and controls. If trait and marker lociB1

do not coincide and if , then the extent of dise-1c (1 2

quilibrium between trait and marker loci can have a
large influence on the heterozygote weight l. For a dom-
inant model ( ), equation (19) shows thatc = 1 l =1

, which is closer to than to 1 when theq /(q � q ) 1/22 1 2

disease allele is rare. For a recessive model ( ), equa-c = 01

tion (19) shows , which varies from 0l = p /(p � p )2 1 2

(when the disease allele and allele are in completeB1

disequilibrium) to 1 (when the disease allele and allele
are in complete disequilibrium).B2

Suppose, for example, that the frequency of the disease
allele is .01 and that the two marker alleles are equally
likely. Then, for maximum disequilibrium between dis-
ease and marker loci, for a recessive disease genel = 0
and for a dominant gene. If the disequilibriuml = .505
coefficient d equals one-fourth of its maximum value,
then for a recessive gene and .503 for a dominantl = .25
gene. Thus, when disease and marker loci do not co-
incide, the optimal weight l for heterozygotes is not 0
for a recessive gene and 1 for a dominant gene. For rare
disease alleles, it is always ∼ , when the disease allele1/2
is dominant. For common disease alleles, the optimal
weight can strongly depend on the tightness of disequi-
librium, regardless of the mode of inheritance. For in-
stance, when the disease-allele frequency is .2, then, un-
der maximum disequilibrium, for a recessive modell = 0
and for a dominant model. However, for loosel = .63
disequilibrium (d equal to one-fourth of its maximum
value), for a recessive model and for al = .38 l = .53
dominant model. Lack of knowledge concerning both
the extent of gametic disequilibrium and the correct pen-
etrance model suggests use of the value in thel = 1/2
test statistic (21). There is a need for investigation of the
power associated with use of this strategy, for a range
of situations.

Discussion

We have described a likelihood-based score statistic for
detection of disease genes by evaluation of phenotype-
marker associations and transmission disequilibrium
within families. The score statistic decomposes into two
components, the NFS and the FS. These components
represent two types of deviation between observed gen-
otypes and their expectations under the null hypothesis.
Each will have a large absolute value if the chromosomal
region contains a disease locus and if the families have
been selected to contain affected individuals. The NFS
represents the deviation between observed and expected
marker alleles in nonfounders, given the founder gen-
otypes. It reflects transmission disequilibrium from par-
ent to affected and unaffected offspring, and it will be
large because the disease locus is linked to the markers.

When the marker data consist of genotypes at a single
locus, both the nonfounder and founder scores are pro-
portional to the standardized disequilibrium coefficient
D between marker and disease loci. Thus, the statistics
should be used only to evaluate the etiologic relevance
of loci t that are in linkage disequilibrium with the
marker. In addition, the nonfounder score is propor-
tional to , where v is the probability of recom-1 � 2v

bination between the marker and disease loci. Thus, if
the two loci were unlinked ( ), then the nonfoun-v = 1/2
der score would vanish identically, and the marker gen-
otypes of nonfounders would not contribute to the total
test statistic. If, on the other hand, , which wouldv = 0
hold when we wish to test the etiologic relevance of the
marker itself, then founders and nonfounders contribute
equally to the total test statistic. In this sense, the genetic
distance between marker and disease loci, as measured
by their recombination fraction v, determines the relative
contributions of founder and nonfounder genotypes to
the total test statistic.

The FS evaluates association between disease and
marker alleles in family founders, and it extends the test
statistics that are currently used for the analysis of case-
control data. FS reflects deviation between the observed
or inferred frequencies of marker genotypes in the foun-
ders and those that are expected in the general popu-
lations to which they belong. It measures association
between the disease and the disease locus, and it will
be large when there is gametic disequilibrium between
disease and marker loci among the founder chromo-
somes. If the null founder-genotype frequencies can be
estimated from independent data, then the FS provides
information supporting or refuting the null hypothesis
derived from the (observed or inferred) marker geno-
types of the founders, even when their phenotypes are
unknown. However, the FS also can be large because
of population stratification or inappropriate assump-
tions (e.g., random mating or Hardy-Weinberg propor-
tions) on the distribution of founder genotypes. Thus,
the FS tests for association, whereas the NFS tests for
linkage as the cause of the association.

These likelihood-based statistics have certain
strengths and limitations. Because they are model-
based, they clarify the role of the underlying genetic
model in the determination of the weights for affected
versus unaffected individuals and, when dealing with
single diallelic markers, the weights for heterozygotes
versus homozygotes. When the model is correctly
specified, the statistics enjoy certain local asymptotic
optimality properties (Cox and Hinkley 1974). How-
ever, the model requires assumptions about the dis-
tribution of the founder genotypes, and the effects on
bias and power resulting from departures from these
assumptions have not yet been fully evaluated. There
is a need to assess the impact on bias and power loss
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associated with misspecification of the distribution of
founder genotypes. One might expect that this impact
would be small when the founder genotypes are
known or can be inferred with some confidence.

One strength of the statistics is that they apply to any
type of family structure, including a “family” consisting
of a single individual, and that they thus eliminate the
need for many different ad hoc tests. In addition, the
approach provides a strategy for dealing with missing
phenotypes and genotypes for key family members, such
as parents. Also, when it is applied to families in which
the phenotypes of some founders are known, the FS
allows comparison of genotypes of affected and unaf-
fected founders. Simultaneous evaluation of the FS
(which may be biased by population stratification) and
the NFS (which is less vulnerable to such bias) can pro-
vide insight into the etiologic relevance of observed
associations.

The likelihood-based framework presented in this
study stimulates consideration of several potentially
useful extensions. First, the likelihood could be ex-
tended to accommodate censored survival data rather
than binary disease outcomes. Second, the likelihood
could be modified to include nongenetic covariates, in
the manner considered by Self et al. (1991). In fact, the
likelihood function proposed by Self et al. is a special

case of the nonfounder component of the likelihood
considered in the present study. Inclusion of nongenetic
covariates would lead to score statistics that have been
adjusted for the effects of the covariates. In addition,
joint maximization of the likelihood, with respect to
regression coefficients for both genetic markers and
nongenetic factors, would allow for multivariate esti-
mation of genotype relative risks (Schaid and Sommer
1993; Schaid and Li 1997; Witte et al. 1999).

If it becomes feasible to produce reliable estimations
of both intermarker genetic distances and population-
specific intermarker disequilibrium coefficients, then as-
sociation studies will benefit from simultaneous consid-
eration of multiple markers that may flank a disease
locus. The systematic framework presented here should
prove useful for such studies.

Note added in proof.—Further discussion of likeli-
hood-based methods analogous to the methods pre-
sented here can be found in a study by Clayton (1999).
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Appendix

We derive the score statistic for a family with phenotype , where m is the number of members withy = (y ,...,y )1 m

known phenotype. Suppose that there are K categories of marker genotypes. Let denote the family’s null probabilityrk

of having category k, and let denote its conditional probability of having category k, given its observedx = P(kFM)k

marker data . The likelihood (3) for the family can therefore be written as follows:M

P(M)�x �P(gFk)P(yFg; a,b)k
k gL(V) = P(MFy) = . (A1)�P(g)P(yFg; a,b)
g

is the probability that a family with marker category k has genotype g at the disease locus t. Also, V is aP(gFk)
vector of parameters that includes the penetrance parameters a and b, any unknown marker parameters in the
probabilities rk, and the test-locus-vs.-marker parameters. Let be a null value of V—that is, one for whichṼ b =

and for which the remaining parameters are specified under the null hypothesis. By differentiation of the logarithm0
of (A1), with respect to b, and by evaluation of the same logarithm at , we find, after some algebraic calculations,Ṽ

that the family’s score is as follows:

�
log L(V)F = e w (x � r ) { eS .˜ �V=V k k k

�b k

In this instance, is the logarithmic derivative of the null disease prevalence in the population, andde = log p(a)F ˜a=ada

is a nonnegative constant, as described in equations (8) and (9).wk

The null mean of S is 0, which follows from likelihood theory (Cox and Hinkley 1974). This can also be seen
from equation (7) and from the fact that the null mean of the random variable
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r P(MFcategory = k)kx = x (M) = (A2)k k P(M)

is

E[x (M)] = P(M)x (M)�k k
M

= r P(MFcategory = k) = r .�k k
M

denotes summation over all possible realizations of the observed marker data .� MM

The asymptotic variance of the score eS (Cox and Hinkley 1974) is

2
2

2� log L(V) 2 2E � F = e E w x � w r { e V .˜ � �V=V k k k k[ ]2 )( ( ){ [ ] }� b k k

For N families from a population that is homogeneous with respect to disease risk p, the score statistic is T =
. If the families are sampled from a heterogeneous population consisting of I identified subpopulationsN N�� S / � Vn=1 n n=1 n

with disease risks pi, , then , where and where is the score statisticdI I 2�i = 1,...,I T = � e T / � e e = log p (a)F T˜i=1 i i i=1 i i i a=a ida

for the subset of families from population i. In the present study, we assume that the population is homogeneous,
so that , , and we may take without loss of generality.e { e i = 1,...,I e = 1i
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